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Quantum Me
hani
al Corre
tions to Simulated Sho
k HugoniotTemperaturesNir Goldman, Evan J. Reed, and Lauren
e E. FriedChemistry, Materials, Earth and Life S
ien
es,Lawren
e Livermore National Laboratory, Livermore, California 94550(Dated: July 17, 2009)Abstra
tWe present a straightforward method for the in
lusion of quantum nu
lear vibrational e�e
ts inmole
ular dynami
s 
al
ulations of sho
k Hugoniot temperatures. Using a Grüneisen equation ofstate and a quasi-harmoni
 approximation to the vibrational energies, we derive a simple, post-pro
essing method for 
al
ulation of the quantum 
orre
ted Hugoniot temperatures. We have usedour novel te
hnique on ab initio simulations of both sho
k 
ompressed water and methane. Ourresults indi
ate signi�
antly 
loser agreement with all available experimental temperature data forthese two systems. Our formalism and te
hnique 
an be easily applied to a number of di�erentsho
k 
ompressed mole
ular liquids or 
ovalent solids, and has the potential to de
rease the largeun
ertainties inherent in many experimental Hugoniot temperature measurements of these systems.PACS numbers:
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I. INTRODUCTIONThe equation of state of materials under extreme pressures and temperatures is of greatimportan
e for understanding planetary interiors1 as well as the 
hemi
al rea
tivity that o
-
urs under strong dynami
 
ompression2. Diamond anvil 
ell experiments have su

essfullya

essed high pressure, low temperature states of matter3, as well as the lower pressure, hightemperature melting line of 
ompressed materials4. Thermodynami
 states that have beenina

essible with diamond anvil 
ells have traditionally been a
hieved through sho
k 
om-pression. Sho
k 
ompression dynami
ally strains the sample in one spatial dimension whilesimultaneously heating the sample5. However, measurement of sho
k Hugoniot (thermody-nami
 end state) temperatures of many systems remains an unresolved issue6. AlthoughRaman s
attering has been used at relatively low 
onditions7 (e. g., 12.1 GPa, 728 K), ingeneral pyrometri
 measurements are used to determine Hugoniot temperatures8,9. In this
ase, the measured intensity versus wavelength of radiation emitted from the sho
k 
om-pressed sample is �t to a greybody Plan
kian distribution9, with the assumption that theemissivity is independent of wavelength. A

urate temperatures remain di�
ult to deter-mine due to large un
ertainties in the 
alibration of these pyrometri
 measurements6. Asa result, experiments tend to rely on equation of state models for temperature data, whi
hhave been shown to be ina

urate for some systems8. Mole
ular Dynami
s (MD) simulationsprovide an independent route to temperature determination, where material properties su
has the sho
k Hugoniot states are readily 
omputed10�14.Empiri
al potentials15,16 and tight-binding simulations10 have been used su

essfully to
ondu
t MD simulations of the sho
k 
ompression of several rea
tive systems. However,a

urate modeling of the breaking and forming of 
hemi
al bonds usually requires the useof quantum theories su
h as Density Fun
tional Theory (DFT), e. g., Ref.17. DFT hasbeen shown to a

urately reprodu
e the high pressure-temperature phase boundaries4,18 andsho
k Hugoniot properties of many materials12�14,19. However, DFT-MD simulations havebeen shown to under-predi
t experimental Hugoniot temperatures for 
ovalently bondedmaterials by up to 20 � 30%14,19. Mole
ular Dynami
s simulations in general propagate
lassi
al nu
lear equations of motion, negle
ting quantum zero-point and vibrational energye�e
ts. In parti
ular, many 
ovalently bonded systems have bond vibrational frequen
iesthat are only ex
ited out of their quantum ground state at high ioni
 temperatures, su
h as2



in liquid water, where the Debeye temperature is approximately 5000 K. Quantum e�e
ts ationi
 temperatures 
lose to this value yield a true heat 
apa
ity of the system that is likelysigni�
antly lower than the 
lassi
al limit. As a result, the erroneous 
lassi
al heat 
apa
itiesinherent in MD simulations of these materials 
ould produ
e Hugoniot temperatures that aretoo low. Determination of material equations of state 
ould be greatly fa
ilitated by a morea

urate MD temperature 
al
ulation methodology that in
ludes these quantum e�e
ts.In this work, we report a novel theoreti
al post-pro
essing methodology for the in
lusionof quantum nu
lear vibrational e�e
ts in the equation of state from MD simulations ofsho
k 
ompression. Our te
hnique is based upon 
omputation of the velo
ity auto
orrelationfun
tion and is independent of the for
e-�eld used in the simulation. We test our theory by
omputing quantum 
orre
ted Hugoniot temperatures from DFT-MD simulations of bothsho
k 
ompressed water and methane. Our results show that our method yields improvedagreement with all available experimental data. We then analyze the power spe
tra fromboth systems in order to 
reate a simple physi
al pi
ture for the magnitude of the quantum
orre
tion at higher temperatures and pressures. Our 
al
ulations represent the �rst timethese quantum e�e
ts have been in
luded in MD Hugoniot temperatures and have beenquanti�ed, to date.II. METHODSIn order to derive a method for 
al
ulation of the quantum nu
lear vibration e�e
ts on theHugoniot temperature, we derive expressions relating the thermal energies for the 
lassi
aland quantum systems. We �rst approximate the equation of state of the true (quantum)system by using a Grüneisen equation of state5 where the pressure and internal energy aredivided into �
old� and �thermal� parts, dependent on the system volume V and temperature
T :

E(V, T ) = Ec(V ) + ET (V, T ) (1)
P (V, T ) = Pc(V ) + PT (V, T ) (2). Here, the quantities Ec and Pc 
orrespond to the 
old 
omponents of the internal energyand pressure, respe
tively, whi
h are independent of temperature. ET (V, T ) 
orresponds to3



the thermal 
omponent of the internal energy. The thermal 
omponent of the pressure isde�ned as PT ≡ Γ(V )ET (V, T )/V , where Γ(V ) is the dimensionless Grüneisen 
oe�
ient,de�ned as Γ(V ) ≡ −∂ ln ν̄/∂ ln V . Here, ν̄ is the average vibron frequen
y. The 
old andthermal portions of the internal energy 
an be written in terms of their ele
troni
 (el) andioni
 (i) 
omponents:
Ec(V ) = Eel

c (V ) + Ei
c(V ) (3)

ET (V ) = Ei
T (V, T ) + Eel

T (V, T ). (4)For this work, our MD simulations are all in the ele
troni
 ground-state, i. e., Eel
c (V ),whi
h allows us to negle
t ele
troni
 
ontributions to the thermal energy (Eel

T (V, T ) = 0).Regardless, we in
lude Eel
T (V, T ) in our formalism, although our �nal expression for thedi�eren
e between the quantum and 
lassi
al thermal energy will depend ex
lusively on theioni
 
omponent.In �rst prin
iples Mole
ular Dynami
s, the ions are treated 
lassi
ally, and we denote theequation of state for the 
lassi
al system with lower 
ase letters:

e(V, t) = ec(V ) + eT (V, t) (5)
p(V, t) = pc(V ) + Γ(V )eT (V, t)/V, (6)where e, p, and t represent the 
lassi
al internal energy, pressure and temperature, re-spe
tively, we have substituted in the de�nition of the thermal 
omponent of the pressure inEqn. 6, and Γ(V ) is the same Grüneisen 
oe�
ient, mentioned above. Here, the volumes ofthe quantum and 
lassi
al systems are 
onstrained to be the same. For the 
lassi
al systemthe 
old energy is entirely ele
troni
, viz.,

ec(V ) = Eel
c (V ). (7)In
lusion of ele
troni
 thermal e�e
ts yields the following for the 
lassi
al thermal energy:

eT (V, t) = ei
T (V, t) + Eel

T (V, T ). (8)We now assume that the vibrational density of states and ele
troni
 energies (Eel
c and

Eel
T ) are the same in both systems. Consequently, the Grüneisen 
oe�
ients are also the4



same for both 
lassi
al and quantum systems. We 
onstrain both systems to have the sameinitial pressure P0 and temperature T0. We ignore the 
ontribution of zero-point vibrationsto the 
old 
omponent of the pressure P i
c(V ), whi
h we estimate to be smaller than the errorbars in our 
omputed stress tensors (see below). As a result, we have pc(V ) = Pc(V ).For a sho
k 
ompressed pro
ess, both quantum and 
lassi
al systems will satisfy theHugoniot relation:

E(V, T ) − E(V0, T0) =
1

2
(V0 − V )(P + P0) (9)

e(V, t) − e(V0, T0) =
1

2
(V0 − V )(p + P0). (10)Using equations 1 and 2, we 
an then expand equation 9 as the following:

Ec(V )−Ec(V0)+ET (V, T )−ET (V0, T0) =
1

2
(V0 −V )

[

Pc(V ) +
Γ(V )ET (V, T )

V
+ P0

]

. (11)Expanding the 
old energy Ec(V ) and the thermal energy ET (V, T ) into their ele
troni
and ioni
 parts, and solving for Ei
T (V, T ), we obtain:

Ei
T (V, T ) =

−Eel
c (V ) + Eel

c (V0) − Ei
c(V ) + Ei

c(V0) + 1
2
(Pc(V ) + P0)(V0 − V ) − Eel

T (V, T ) + ET (V0, T0)
[

1 − Γ(V )(V0−V )
2V

] .(12)Similarly, for the 
lassi
al system, we obtain:
ei

T (V, t) =
−Eel

c (V ) + Eel
c (V0) + 1

2
(Pc(V ) + P0)(V0 − V ) − Eel

T (V, T ) + eT (V0, T0)
[

1 − Γ(V )(V0−V )
2V

] . (13)We then subtra
t Eqns. 12 and 13 to obtain the following relation for Ei
T (V, T ):

Ei
T (V, T ) = ei

T (V, t) +
[Ei

T (V0, T0) − ei
T (V0, T0)] − [Ei

c(V ) − Ei
c(V0)]

(

1 − Γ(V )(V0−V )
2V

) (14)whi
h we simplify to
Ei

T (V, T ) = ei
T (V, t) + ∆E(T0, V0; V ), (15)where ∆E(T0, V0; V ) equals the se
ond term on the right hand side of Eqn. 14.In order to 
ompute the values of the 
old and thermal quantum ioni
 energies, Ei

c(V )and Ei
T (V, T ), we apply the quasi-harmoni
 approximation to the vibrational states of thesystem. As a result, we write the 
old ioni
 energies as:5



Ei
c(V ) =

1

2

∫

∞

0

ρ(ω, V )~ω dω, (16)where ρ(ω, V ) is the vibrational density of states of the system, whi
h we take to be thepower spe
trum of the time dependent velo
ity auto
orrelation fun
tion, viz., ρ(ω, V ) ∝
∫

∞

0
dτ cos(ω, τ) 〈v(τ)v(0)〉 / 〈v(0)2〉. We normalize ρ(ω, V ) to ∫

∞

0
dω ρ(ω, V ) = 3NA, where

NA equals Avogadro's Number.Similarly, we write for Ei
T (V, T ) :

Ei
T (V, T ) =

∫

∞

0

dω ET
QHO

(ω, T ), ρ(ω, V ) (17)where ET
QHO

(ω, T ) is the average thermal energy of the quantum harmoni
 os
illator:
EQHO

(ω, T ) =
~ω

e~ω/kBT − 1
. (18)For a 
lassi
al quasi-harmoni
 material, we have the standard expression for the thermalioni
 energy, ei

T (V, t) = 3NkBt. The low frequen
y part of the vibrational spe
trum (ν <

T ) for a mole
ular liquid exhibits nearly 
lassi
al behavior. Hen
e, our quantum energy
orre
tion will be signi�
ant only for the higher frequen
y, solid-like modes of the system,
onsistent with the quasi-harmoni
 approximation.We now relate Ei
T (V, T ) and ei

T (V, t) by taking Eqns. 17 and 15 to form:
Ei

T (V, T ) =

∫

∞

0

dω EQHO
(ω, T ) ρ(ω, V ) = 3NkBt + ∆E(T0, V0; V ). (19)We 
an form an expression for the quantum 
orre
tion to the thermal energy as a fun
tionof frequen
y by solving for ∆E(T0, V0; V ) and inserting 
lassi
al energy into the integrand:

∆E(T0, V0; V ) =

∫

∞

0

dω ρ(ω, V )

(

~ω

e~ω/kBT − 1
− kBt

) (20)Consequently, given the temperature of the quantum (T ) and 
lassi
al systems (t), we
an determine the 
ontribution to the 
orre
tion from spe
i�
 vibrational modes for a givensho
k 
ompressed system.Thus, determination of the Hugoniot quantum temperature pro
eeded as follows. Af-ter 
al
ulation of the power spe
trum, we use Eqns. 16 and 17 to determine the value of
∆E(T0, V0; V ). Values of Γ(V ) were 
omputed by �rst performing two 
onstant volume-temperature (NVT) simulations at the Hugoniot temperature and at 200 K above for both6



the lowest and highest simulation densities for ea
h system. Γ(V ) was then determined byusing the relation Γ(V ) = V ∂P/∂E ≈ V ∆P/∆E. Values for water of Γ(V ) at densitiesbetween the two extrema were 
omputed via linear regression. Our approximation for Γ(V )is dis
ussed further in the Results se
tion, below. We then use Eqn. 19 to solve numeri
allyfor the quantum Hugoniot temperature, whi
h we label TQM . Sin
e the power spe
trum 
anbe 
al
ulated for any saved simulation traje
tory, our te
hnique 
an easily be applied to anypreviously 
omputed sho
k 
ompression MD simulation.It is possible to 
ompute a quantum Hugoniot pressure 
orre
tion from the de�nitionof the thermal pressure PT , i. e., ∆P = Γ(V )∆E(V0, T0; V )/V . However, for all of oursimulations the values of ∆P were less than 1 MPa, i. e., three orders of magnitude smallerthan the error in the 
lassi
ally 
omputed pressure. We have also estimated the 
ontributionof zero-point vibrations to the 
old 
omponent of the pressure, P i
c(V ) = −dEi

c(V )/dV , by�tting our results for Ei
c(V ) to a simple fun
tional form. Similarly, we �nd this quantumpressure 
orre
tion to be less than 1 MPa.III. COMPUTATIONAL DETAILSAll sho
k 
ompression simulations were 
ondu
ted with the Multi-S
ale Sho
k Te
hnique(MSST)12,13,20�22. MSST is a simulation methodology based on the Navier-Stokes equationsfor 
ompressible �ow. Instead of simulating a sho
k wave within a large 
omputational 
ellwith many atoms, the MSST 
omputational 
ell follows a Lagrangian point through thesho
k wave. This is a

omplished by time-evolving equations of motion for the atoms andvolume of the 
omputational of 
ell to 
onstrain the stress in the propagation dire
tion tothe Rayleigh line and the energy of the system to the Hugoniot energy 
ondition20,22. For agiven sho
k speed, these two relations des
ribe a steady planar sho
k wave within 
ontinuumtheory. The MSST te
hnique thus enables simulation of the sho
k wave with small systemsizes12, making it possible to simulate with DFT or other 
omputationally intensive for
e�elds. MSST has been used in 
onjun
tion with DFT-MD to a

urately reprodu
e the sho
kHugoniot of a number of systems13,14. MSST has also been shown to a

urately reprodu
ethe sequen
e of thermodynami
 states throughout the rea
tion zone of sho
k 
ompressedexplosives with analyti
al equations of state22.All of our DFT-MD simulations for water and methane were between 5�11 ps in length,7



with an average drift from the Hugoniot energy 
ondition of 0.5% or less. A �
titious boxmass of 3.5 x 106 a. u. and a wavefun
tion 
onvergen
e 
riteria of 10−6 a. u. were used forall simulations unless otherwise noted. Our simulations of sho
k 
ompressed water havebeen dis
ussed in a previous publi
ation14. For this system we performed simulations ofthe following sho
k velo
ities (km/s): 5, 6.5, 7.5, 9, 10, 11 using the CPMD simulationsoftware pa
kage23. Stronger sho
k velo
ities resulted in ele
troni
 ex
itation beyond theBorn-Oppenheimer state, whi
h requires the in
lusion of ele
tron thermal ex
itations24,25. Inthese simulations we used a planewave 
uto� of 120 Rydberg was used with the Be
ke-Lee-Yang-Parr ex
hange-
orrelation fun
tional26,27. Tests with the PBE ex
hange-
orrelationfun
tional28 yielded 
onsistent results over the pressure-temperature range of our 
al
ula-tions. An initial 
on�guration of 64 H2O mole
ules was generated from an equilibratedCPMD simulation 
ondu
ted at 300 K with 
omputational-
ell latti
e ve
tors of a = 19.72Å, b = 9.86 Å, and c = 9.86 Å. This 
orresponds to the ambient density of 1 g/

, similar toinitial 
onditions of experiments29. Uniaxial 
ompression of the sho
k wave o

urred alongthe a latti
e ve
tor. Convergen
e tests with up to 128 mole
ules showed that a system sizeof 32 mole
ules provided su�
ient 
onvergen
e of the stress tensor for the sho
k 
ompressed
on�gurations. Simulations at 10 and 11 km/s had an additional for
e 
onvergen
e 
riteriaof 10−7 a. u.Our simulations of sho
k 
ompressed methane were 
ondu
ted with the CP2K mixedbasis set DFT simulation software suite30,31. We simulated sho
k velo
ities of 11 and 12.2km/s in order to mat
h the small experimental data set for the methane sho
k temperaturesas 
losely as possible. For these simulations we used a planewave 
uto� of 280 Ry andan optimized TZVP basis set for both 
arbon and hydrogen, although we observed thesystem energy and stress tensor to be 
onverged with the smaller DZVP basis set. Weemployed Goede
ker-Teter-Hutter pseudopotentials32 with the PBE ex
hange 
orrelationfun
tional28. An initial 
on�guration of CH4 mole
ules was generated from an equilibratedCP2K simulation 
ondu
ted at 111 K with 
omputational-
ell latti
e ve
tors of a = 25.06Å, b = 12.53 Å, and c = 12.53 Å. Uniaxial 
ompression of the sho
k wave o

urred alongthe a latti
e ve
tor. These 
ell dimensions yield a density of 0.432 g/

, similar to initial
onditions of experiments33,34.
8



IV. RESULTSA. WaterOur results for the Hugoniot temperature values for water are shown in Table I andFig. 1. We have shown ex
ellent agreement of our simulations with experimental results forthe pressure vs. density equation of state of water14. We �nd that our quantum me
hani
al
orre
tions bring our 
al
ulated temperatures in ex
ellent agreement with experiment. Ourquantum Hugoniot temperatures provide ex
ellent validation of DFT over a wide range ofthermodynami
 
onditions. Our results show that quantum nu
lear vibrational e�e
ts playa signi�
ant role in water even at elevated temperatures (> 4000 K).Using the method for approximation for Γ(V ) mentioned above, we 
omputed a valuesof Γ = 0.681 at 8.3 GPa (5 km/s) and Γ = 0.355 at 67.8 GPa (11/kms). For 
omparison,we 
ompute values of Γ from a re
ent equation of state for water35 of 0.990 and 0.400,respe
tively. In order to examine the dependen
e of ET (V, T ) on Γ, we 
an expand Eqn. 14about Γ0 to �rst order to obtain the 
hange in ET as a fun
tion of Γ:
∆ET (Γ − Γ0) = ET (Γ) − ET (Γ0) =

∆E(V0, T0; V )(V0 − V )(Γ − Γ0)

(2V )
[

1 − Γ0(V0−V )
2V

]2 + O2(Γ) (21)We then use our equation of state results for Γ as an upper limit to obtain a 7.3%di�eren
e in ET at 8.3 GPa and a 0.1% di�eren
e at 67.8 GPa. This results in a 5.4% and0.1% 
hange in the value of TQM , respe
tively. Thus, our results are relatively insensitive tothe 
hosen value of Γ, and our method for determining its value is valid for our simulations.In order to quantify the quantum temperature 
orre
tion from spe
i�
 vibrational modes,we have plot the results for ∆E(V0, T0; V ) from Eqn. 20 for our simulation at TQM = 584K (Fig. 2). At frequen
ies below TQM , we observe that the di�eren
e between the 
lassi
aland quantum thermal energies is slightly positive. This is due to the fa
t that TQM ishigher in value than the 
lassi
al temperature, and the vibrational modes at these lowfrequen
ies are mainly 
lassi
al in nature, in
luding the zero-frequen
y part of the powerspe
trum due to self-di�usion. However, as the frequen
y in
reases above TQM , we observe asigni�
ant 
orre
tion due to the quantization of the vibrational energies. This 
on�rms thevalidity of our treatment of the liquid mole
ular vibrations with a quantum quasi-harmoni
9



approximation. Only the higher frequen
y modes above the system temperature experien
esigni�
ant quantum e�e
ts.The signi�
ant quantum Hugoniot temperature 
orre
tion at high sho
k velo
ity (e. g.,11 km/s) 
an be explained through examination of the 
omputed power spe
tra (Fig. 3).We observe that the vibron (O�H stret
h mode) broadens signi�
antly and red-shifts as afun
tion of in
reasing temperature and pressure due to a weakening of the O�H bonds. Inaddition, the integrated intensity of the vibron peak at 4244 K (11 km/s) is approximately70% of the value at ambient 
onditions, despite the high degree of disso
iation of water underthese 
onditions14. This allows for an in
reased number of vibrational states to be a

essedby the system at higher pressure and temperature. The TQM value of water at 4244 K isroughly equal to its Debeye temperature. As a result, low lying ex
ited vibrational stateswill have signi�
ant 
ontributions to the heat 
apa
ity of the system at these 
onditions.We 
al
ulate a quantum 
orre
tion of 34.6% at a TQM value of 584 K, whi
h de
reases toa value of 16.1% at 4244 K. This is 
onsistent with the requirement that the quantum heat
apa
ity must 
onverge to the 
lassi
al limit with in
reasing temperature.B. MethaneWe present the simulated Hugoniot values for methane in Table II and Figs. 4 and 5.We use values of Γ of 0.438 at 32.4 GPa (1 km/s) and 0.300 at 42.2 GPa (12.2 km/s). Oursimulations provide quantitative validation of the DFT-Generalized Gradient Approximationequation of state for methane up to pressures up to 
a. 42 GPa (Fig 4). The error in thedensity is most likely mu
h lower than that at ambient 
onditions36 due to the de
reasedimportan
e of van der Waals intera
tions at extreme 
onditions. Similar to water, we �ndthat in
lusion of quantum nu
lear vibrational e�e
ts results in notable improvement betweensimulation and experimental results for the Hugoniot temperature (Fig. 5). Comparison ofpower spe
tra at TQM values of 3244 K (32.4 GPa, 11 km/s) and 4059 K (42.2 GPa, 12.2km/s) to that from the initial 
onditions (Fig 6) shows that the methane vibron (C�Hstret
h mode) broaden but red-shifts only slightly. This indi
ates that the C�H bond isnot signi�
antly weakened under the 
onditions of our simulations. The integrated intensityof the vibron peak at both TQM values of 3244 K and 4059 K is approximately equal tothe value at the initial 
onditions, 
onsistent with minimal methane disso
iation, dis
ussed10



below. We observe that the TQM values are approximately equal to the Debeye temperature,in a

ordan
e with the signi�
ant 
omputed quantum 
orre
tions to the temperature.We have analyzed the 
hemi
al spe
ies present in our simulations using previously es-tablished 
riteria for high pressure-temperature systems1,14,37,38. Bond 
uto� values rcwere 
hosen based on the maximum of the potential of mean for
e, e. g., W (RCH) =

−kBT ln[g(RCH)]. We have 
hosen a value of rc = 1.25 Å for C�H bonds in all of oursimulations. In addition, in order to avoid 
ounting spe
ies that were entirely transient andnot 
hemi
ally bonded37, we also 
hose a lifetime 
uto� of 25 fs (e. g., two os
illations ofa C�H bond vibration). This 
riteria is intuitive sin
e C�H bonds with this lifetime 
ould
on
eivably be dete
ted spe
tros
opi
ally.We do not observe any C�C or H�H bonding in our simulations, similar to tight-bindingstudies at similar 
onditions10. Previous DFT-MD simulations observed methane de
ompo-sition at signi�
antly higher pressures and temperatures39. At a TQM of 3244 K, we observedapproximately 1% of the methane disso
iated via a unimole
ular me
hanism, viz., CH4 ↔H+ + CH−

3 . The disso
iation remains unimole
ular and in
reases to 10% when the simu-lation is sho
k 
ompressed to 4059 K. This small degree of disso
iation is 
onsistent withshort-time s
ale sho
k 
ompression experiment measurements of low ele
tri
al 
ondu
tivityof methane under these 
onditions34. Diamond Anvil Cell experiments at orders of mag-nitude longer time s
ales observe diamond formation at similar 
onditions40. The per
ent
hange in our quantum 
orre
ted Hugoniot 
omputed temperatures de
reases from 32.5%at 11 km/s to 25% at 12.2 km/s. Thus we observe that methane exhibits quantum 
orre
-tions to the Hugoniot temperature that are equivalent to di�eren
es between simulation andexperiment for water and other systems19.V. CONCLUSIONSOur quantum Hugoniot temperature 
al
ulation method yields an improved agreementbetween DFT-MD simulations and pyrometry experiments. Our results provide validationof DFT with the Generalized Gradient Approximation for the high pressure-temperatureequation of state of both water and methane. We predi
t signi�
ant quantum 
orre
tionsto the Hugoniot temperatures of our simulations, due to quantization of the high frequen
yvibron of 
ovalently bonded systems su
h as water and methane. Our te
hnique 
an be easily11



applied to any number of systems and 
an be used to de
rease experimental un
ertainties insho
k Hugoniot temperature measurements. Our quantum Hugoniot temperature method
an also be used in 
onjun
tion with MD simulations to 
ompute experimental Hugoniottemperatures where equation of state modeling is known to be ina

urate.Prior to our submission, we were made aware of re
ent results from a somewhat similarte
hnique used to 
al
ulate the in�uen
e of quantum nu
lear vibrational e�e
ts on the equa-tion iof state of water41. This te
hnique di�ers from ours in that it requires 
al
ulation ofthe mole fra
tion of non-disso
iated water mole
ules and does not require expli
it 
omputa-tion of the vibrational density of states. In parti
ular, our method does not require expli
itdetermination of the spe
ies present in the simulation. However, their results show similarlyimproved agreement to experiment for the Hugoniot tmeperatures.ACKNOWLEDGEMENTSThis work was performed under the auspi
es of the U.S. Department of Energy byLawren
e Livermore National Laboratory under Contra
t DE-AC52-07NA27344. Theproje
t 06-ERD-037 was funded by the Laboratory Dire
ted Resear
h and DevelopmentProgram at LLNL. Computations were performed at LLNL using the following massivelyparallel 
omputers: prism, MCR, Thunder, uP, and Blue Gene L (BG/L).

12



1 N. Goldman, L. E. Fried, I.-F. W. Kuo, and C. J. Mundy, Phys. Rev. Lett. 94, 217801 (2005).2 R. Jeanloz, P. M. Celliers, G. W. Collins, J. H. Eggert, K. K. M. Lee, R. S. M
Williams, S.Brygoo, and P. Loubeyre, Pro
. Natl. A
ad. S
i. USA 104, 9172 (2007).3 A. F. Gon
harov, V. V. Struzkhin, M. S. Somayazulu, R. J. Hemley, and H. K. Mao, S
ien
e273, 218 (1996).4 A. F. Gon
harov, N. Goldman, L. E. Fried, J. C. Crowhurst, I.-F. W. Kuo, C. J. Mundy, andJ. M. Zaug, Phys. Rev. Lett. 94, 125508 (2005).5 Y. B. Zel'dovit
h and Y. P. Raizer, Physi
s of Sho
k Waves and High-Temperature Hydrodynami
Phenomena (Dover Publi
ations, Mineola, New York, 2002).6 K. K. M. Lee, L. R. Benedetti, R. Jeanloz, P. M. Celliers, J. H. Eggert, D. G. Hi
ks, S. J. Moon,A. Ma
kinnon, L. B. D. Silva, D. K. Bradley, W. Unites, and G. W. Collins, J. Chem. Phys.125, 014701 (2006).7 G. I. Pangilinan and Y. M. Gupta, J. Appl. Phys. 70, 967 (1997).8 G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A. C. Mit
hell, J. Chem. Phys. 76, 6282 (1982).9 H. B. Radousky and A. C. Mit
hell, Rev. S
i. Instrum. 60, 3707 (1989).10 J. D. Kress, S. R. Bi
kham, L. A. Collins, B. L. Holian, and S. Goede
ker, Phys. Rev. Lett. 83,3896 (1999).11 K. Kadau, T. C. Germann, P. S. Lomdhal, and B. L. Holian, S
ien
e 296, 1681 (2002).12 E. J. Reed, M. R. Manaa, L. E. Fried, K. R. Glaesemann, and J. D. Joannopoulos, NaturePhysi
s 4, 72 (2008).13 C. J. Mundy, A. Curioni, N. Goldman, I.-F. Kuo, E. Reed, L. E. Fried, and M. Ianuzzi, J. Chem.Phys. 128, 184701 (2008).14 N. Goldman, E. J. Reed, I.-F. W. Kuo, L. E. Fried, C. J. Mundy, and A. Curioni, J. Chem.Phys. 130, 124517 (2009).15 A. Stra
han, A. C. T. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard, Phys. Rev.Lett. 91, 098301 (2003).16 A. V. Bolesta, L. Zheng, D. L. Thompson, and T. D. Sewell, Phys. Rev. B 76, 224108 (2007).17 F. Gygi and G. Galli, Phys. Rev. B 65, 220102 (2002).18 E. S
hwegler, M. Sharma, F. Gygi, and G. Galli, Pro
. Nat. A
ad. S
i.(USA) 105, 14779 (2008).13



19 J. D. Kress, S. Mazevet, L. A. Collins, and W. W. Wood, Phys. Rev. B 63, 024203 (2000).20 E. J. Reed, L. E. Fried, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 235503 (2003).21 E. Reed, L. E. Fried, M. R. Manaa, and J. D. Joannopoulos, in Chemistry at Exteme Conditions,edited by M. Manaa (Elsevier, ADDRESS, 2005).22 E. J. Reed, L. E. Fried, W. D. Henshaw, and C. M. Tarver, Phys. Rev. E 74, 056706 (2006).23 R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985); CPMD 
ode, version 3.11.1, Copy-right IBM Corp 1990-2006, Copyright MPI für Festkörperfors
hung Stuttgart 1997-2001.24 T. R. Mattsson and M. P. Desjarlais, Phys. Rev. Lett. 97, 017801 (2006).25 M. Fren
h, T. R. Mattsson, N. Nettelman, and R. Redmer, Phys. Rev. B 97, 054107 (2009).26 A. D. Be
ke, Phys. Rev. A 38, 3098 (1988).27 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).28 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).29 R. Chau, A. C. Mit
hell, R. W. Mini
h, and W. J. Nellis, J. Chem. Phys 114, 1361 (2001).30 J. VandeVondele, M. Kra
k, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comp.Phys. Comm. 167, 103 (2005).31 CP2K 
ode, http://
pk2.berlios.de (Copyright CP2K developers group 2000-2009).32 S. Goede
ker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).33 W. J. Nellis, F. H. Rhee, M. van Thiel, and A. C. Mit
hell, J. Chem. Phys. 75, 3055 (1981).34 H. B. Radousky, A. C. Mit
hell, and W. J. Nellis, J. Chem. Phys. 93, 8235 (1990).35 S. Bastea and L. E. Fried, J. Chem. Phys. 128, 174502 (2008).36 M. J. M
Grath, J. I. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F.Mohamed, and M. Kra
k, ChemPhysChem 6, 1894 (2005).37 N. Goldman and L. E. Fried, J. Chem. Phys. 125, 044501 (2006).38 N. Goldman and L. E. Fried, J. Chem. Phys. 126, 134505 (2007).39 F. An
ilotto, G. L. Chiarotti, S. S
andolo, and E. Tosatti, S
ien
e 275, 1288 (1997).40 L. R. Benedetti, J. H. Nguyen, W. A. Caldwell, H. Liu, M. Kruger, and R. Jeanloz, S
ien
e 286,100 (1999).41 M. Fren
h and R. Redmer, J. Phys.: Condens. Matter, submitted.
14



Table I: Table of �nal thermodynami
 for our water sho
k 
ompression simulations. Error barswere determined by 
al
ulating the standard deviation over four time blo
ks.Sho
k velo
ity (km/s) Pressure (GPa) TCl (K) TQM (K)5 8.3 ± 0.1 434 ± 14 5846.5 18.2 ± 0.2 791 ± 7 10477.5 26.5 ± 0.4 1167 ± 4 15179 42.0 ± 0.3 1995 ± 8 248010 53.8 ± 0.3 2744 ± 10 329211 67.8 ± 0.2 3654 ± 6 4244Table II: Table of �nal thermodynami
 states for methane sho
k 
ompression simulations. Errorbars were determined by 
al
ulating the standard deviation over four time blo
ks.Sho
k velo
ity (km/s) Pressure (GPa) Density (g/
m3) TCl (K) TQM (K)11 32.4 ± 0.4 1.12 ± 0.01 2448 ± 10 324412.2 42.2 ± 0.3 1.2 ± 0.01 3229 ± 8 4059

15



5000

4000

3000

2000

1000

T
 (

K
)

80604020

P (GPa)Figure 1: Plot of 
lassi
al and quantum Hugoniot temperatures for water. Open 
ir
les 
orrespondto 
lassi
al ioni
 temperatures, solid 
ir
les to quantum 
orre
ted temperatures, and open squaresto experimental results8.

16



-5

-4

-3

-2

-1

0

D
E

 (
k

J
/m

o
l)

40003000200010000

frequency (cm
-1

)Figure 2: Plot of the di�eren
e between the quantum and 
lassi
al thermal energies as a fun
tionof frequen
y for water at TQM = 584 K (dashed line).

17



1.0

0.8

0.6

0.4

0.2

0.0

In
te

n
si

ty
 [

a
rb

it
ra

ry
 u

n
it

s]

40003000200010000

Frequency (cm
-1

)Figure 3: Plot of the power spe
tra of water at the initial 
onditions (300 K; thi
k bla
k line), andquantum 
orre
ted temperatures TQM of 584 K (5 km/s; dotted line), and 4244 K (11km/s; thinbla
k line). The `+' marks 
orrespond to the TQM values 
onverted to wavenumbers.
18



1.21.11.00.90.8

r (g/cc)

40

30

20

10

P
 (

G
P
a
)

Figure 4: Plot of the pressure vs. density Hugoniot for CH4. The solid bla
k 
ir
les 
orrespond toour results form CP2K, the open squares from Nellis et al.33 and the open triangles from Radouskyet al.34

19



4500

4000

3500

3000

2500

T
 (

K
)

1.221.201.181.161.141.12

r (g/cc)Figure 5: Plot of the temperature vs. density Hugoniot for CH4. The open 
ir
les 
orrespondto the 
lassi
al ioni
 temperature from CP2K, the solid bla
k 
ir
les to the quantum 
orre
tedtemperatures, and the open sqaures with error bars to experimental results34.

20



2.0

1.5

1.0

0.5

0.0

In
te

n
si

ty
 [

a
rb

it
ra

ry
 u

n
it

s]

40003000200010000

Frequency (cm
-1

)Figure 6: Plot of the vibrational density of states of methane at the initial 
onditions (111 K; thi
kbla
k line), and TQM values of 3244 K (11 km/s; dotted line), and 4059 K (12.2 km/s; thin bla
kline). The `+' marks 
orrespond to the TQM values 
onverted to wavenumbers.
21


